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Abstract
We investigate the role of noise in the nonlinear relaxation of two ecosystems
described by generalized Lotka–Volterra equations in the presence of
multiplicative noise. Specifically we study two cases: (i) an ecosystem with
two interacting species in the presence of periodic driving; (ii) an ecosystem
with a great number of interacting species with random interaction matrix. We
analyse the interplay between noise and periodic modulation for case (i) and the
role of the noise in the transient dynamics of the ecosystem in the presence of an
absorbing barrier in case (ii). We find that the presence of noise is responsible
for the generation of temporal oscillations and for the appearance of spatial
patterns in the first case. In the other case we obtain the asymptotic behaviour
of the time average of the ith population and discuss the effect of the noise on
the probability distributions of the population and of the local field.

1. Introduction

The description and analysis of interacting populations with a discrete number of individuals
is a common subject in several branches of physics and other sciences (Giardina et al 2000).
Real ecosystems present a complex behaviour, which is characterized by two peculiarities: the
interactions between components are nonlinear and their environment is noisy.

The noise can induce nontrivial effects in physical and biological systems. The presence
of a noise source in fact can modify in an unexpected way the behaviour of the corresponding
deterministic evolution of the system. Well known examples are stochastic resonance
(Gammaitoni et al 1998), resonant activation (Mantegna and Spagnolo 2000) and noise-
enhanced stability phenomena (Agudov and Spagnolo 2001).
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The dynamics of interacting biological species can be successfully represented by means of
a dynamical system with stochastic elements. In particular the population dynamics of complex
ecosystems is well described by the generalized Lotka–Volterra equations. Within this model
the study of interacting populations of only two or three species extracted from an ecosystem
seems to be ecologically justified in a number of important cases, because the nonlinearity of
the model reproduces the typical phenomenology of population dynamics (Bazykin 1998).
An N -species generalization of the usual Lotka–Volterra model with a Malthus–Verhulst
modellization of the self-regulation processes with multiplicative noise seems to be an useful
tool to study the population dynamics of interacting species in a timescale much shorter than
the evolution time (Cirone et al 2001).

For these reasons in this paper we shall study the nonlinear relaxation of two ecosystems
described by generalized Lotka–Volterra equations in the presence of multiplicative noise,
namely

• a system with two interacting species in the presence of periodic driving;
• a system with a great number of interacting species with random interaction matrix.

In the first case we consider a symmetric two-species competition stochastic model which
is suitable, with some improvements, to explain the spatial–time behaviours obtained from
experimental data of fish populations collected by the Interdisciplinary Group of Oceanography
of the IRMA-CNR on the Mediterranean Sea. We analyse how the interplay between the noisy
environment, the periodic modulation of the interaction parameter and the nonlinearity of the
system can change the population dynamics in an unexpected way. We find that the presence
of noise is responsible for the generation of temporal oscillations and for the appearance of
spatial patterns.

In the second case we focus on the statistical properties of the time integral of the ith
population and on the distribution of the population and of the local field. We obtain asymptotic
behaviour for three different nonlinear relaxation regimes and the stationary probability
distribution of the population in the presence and in the absence of external noise. This
analysis allow us to estimate characteristic timescales for which the consideration of random
fluctuations significantly changes the usual picture obtained from deterministic differential
equations. Moreover some populations have a dynamical behaviour such that after a long time
they influence in a significant way the dynamics of other species. Specifically we find that the
local field and the cavity field, which is the total interaction of all species in the ith population
when this population is absent, are very different in absence of noise, contrary to what we
expected. These fields, however, overlap quite well in the presence of noise.

2. Two interacting species

2.1. The model

We consider a generalized Lotka–Volterra model of symmetric two-species competition
with a Malthus–Verhulst modellization of the self-regulation processes. The abundance of
populations in nature is sensitive to fluctuations of the external environment and to periodic
variations of the temperature. The interaction with the noisy and nonstationary environment is
therefore taken into account with the introduction of two terms into the model: (i) multiplicative
noise and (ii) a periodic variation of the interaction parameter among the species. The relative
equations are

ẋ = αx(β − x − γ (t)y) + xξx(t) (1)

ẏ = αy(β − y − γ (t)x) + yξy(t) (2)
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Figure 1. Time evolution of two competing populations in the absence of noise.

where x and y are the population densities, α is a coefficient which is proportional to the growth
rate, β is the capacity of the ecological niche and γ (t) modellizes the interactions among the
species. The noise terms ξi(t) are assumed to be Gaussian white-noise sources with zero mean
and correlation function 〈ξi(t)ξi(t + τ)〉 = σδ(τ)δij . To consider the effect of the periodic
variations of the environment temperature on the abundances of populations we assume that
the dynamics of the ecosystem is modulated through the interaction parameter γ (t) as follows
(Rinaldi et al 1993, Vilar and Solé 1998):

γ (t) = β + δ + A sin (�t) (3)

where the parameters δ, A and � are constants. In the absence of noise this functional form of
the interaction parameter is a perturbation which moves the system periodically in time from
a stable state (coexistence of the two species) to an unstable state (exclusion of one of the
two species), depending on the value of the parameter δ. Specifically when δ > 0 one of two
species is eliminated (exclusion) while for δ < 0 both species are present (coexistence).

2.2. Spatiotemporal patterns

We numerically integrate the stochastic differential equations (1) and (2), and we find that
the presence of external multiplicative noise changes in a remarkable way the dynamics of
the two species. In the absence of noise the result of the numerical solution of equations (1)
and (2) is reported in figure 1. The values of the model parameter used for this simulation are
A = 0.1, � = 2π × 10−3, α = 1.0, β = 1.0, δ = −0.01.

We observe that the two species coexist and their evolution is in phase with the driving
periodic external force. When we add the multiplicative noise we obtain a very interesting time
behaviour (see figure 2), in which we observe (i) a transient behaviour with an enhancement of
the temporal oscillation; (ii) anticorrelated oscillations of the two species, in such a way that,
for particular values of the parameters, one species periodically predominates the other one;
(iii) a random inversion of the temporal oscillations of the two species. These peculiarities of
the temporal pattern are of course due to the presence of the noise.
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Figure 2. Time evolution of two competing populations in the presence of noise. The noise
intensity is σ = 10−6.

For appropriate values of the model parameters, namely A = 0.2, � = 0.035, α = 1.0,
β = 45.0, δ = −0.45, and with a noise intensity of σ = 2 we recover the qualitative time
behaviour of the experimental data of some particular populations of the Mediteranean Sea:
the foraminifera (Spagnolo et al 2001).

When we include in our model the spatial effects, new spatiotemporal patterns appear.
These patterns, which are absent from the deterministic model, are due to the interplay between
the noisy environment of the ecosystem and the spatial diffusion of the species. We take these
effects into account by considering a discrete time evolution model, which is the discrete
version of the equations (1) and (2) with diffusive terms, namely a couple map lattice (Kaneko
1992). These diffusive terms model the interaction between a site population with the four
nearest neighbours. In this discrete model, spatial patterns arise when noise is present. In the
deterministic time evolution we have a homogeneous spatial distribution of both populations.
The results of our simulations for one species are shown in figure 3. The spatial pattern of the
other species is anticorrelated with the first one. This means that each species prefers some
spatial regions where the other species is absent. These peculiarities of the spatial patterns are
the same as found by the Oceanography Group of the IRMA-CNR when they analysed the
experimental data of small pelagians in the Mediterranean Sea (Spagnolo et al 2001). This
means that our simple predictive model (equations (1) and (2)) can reproduce some of the basic
features present in real ecosystems.

3. N interacting species

3.1. The model

Now we consider N interacting species of a fully connected ecological network. We use the
same generalized Lotka–Volterra equations of the previous case but with random interaction
among the species. The nonlinearity of the Lotka–Volterra equations complicates their
analytical investigation, especially in the case of a great number of interacting species.
Nevertheless some analytical approximation as well as numerical simulations give some
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Figure 3. Spatial pattern of the density of a species. The intensity of the diffusion parameter is 0.01.

insight into the behaviour of complex ecosystems (Ciuchi et al 1996, Cirone et al 2001). The
generalized Lotka–Volterra model has been explored in detail; however, a full characterization
of the conditions under which a population extinguishes or survives in the competition process
has not been achieved (Abramson and Zanette 1998).

Our starting point is the following Ito stochastic differential equation describing the
dynamical evolution of the ecosystem:

dni(t) =
[ (

γ +
ε

2

)
− ni(t) +

∑
j �=i

Jij nj (t)

]
ni(t) dt +

√
εni(t) dwi (4)

whereni(t) � 0 is the number of elements of the ith species and i = 1, . . . , N , withN = 1000,
the number of the species of our ecosystem. In equation (4) γ is the growth parameter, the
random interaction matrix Jij modellizes the interaction between different species (i �= j )
and wi is the Wiener process whose increment dwi satisfies the usual statistical properties:
〈dwi(t)〉 = 0 and 〈dwi(t) dwj(t

′)〉 = δij δ(t− t ′) dt . We consider all species equivalent so that
the characteristic parameters of the ecosystem are independent of the species. The solution of
the dynamical equation equation (4) is given by

ni(t) = ni(0) exp
[
δt +

√
εwi(t) +

∫ t

0 dt ′
∑

j �=i Jij nj (t
′)
]

1 + γ ni(0)
∫ t

0 dt ′ exp
[
δt ′ +

√
εwi(t ′) +

∫ t ′
0 dt ′′

∑
j �=i Jij nj (t

′′)
] . (5)

The interaction between the species is assumed to be random and it is described by a random
asymmetric interaction matrix Jij , whose elements are independently distributed according to
a Gaussian distribution with 〈Jij 〉 = 0, 〈JijJji〉 = 0 and σ 2

J = J 2/N , where J is the interaction
strength. The initial values of the populations ni(0) also have Gaussian distribution with mean
value 〈ni(0)〉 = 1 and variance σ 2

n = 0.01.
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3.2. Stationary analysis

In the absence of external noise (ε = 0), the steady state solutions of equation (4) are obtained
by the fixed-point equation

(γ − ni + hi)ni = 0 (6)

where hi = ∑
j Jijnj (t) is the local field, which we can assume to be Gaussian with zero mean

and variance σ 2
hi

= 〈h2
i 〉 = J 2〈n2

i 〉, for a great number of interacting species. The solutions of
equation (6) are

ni = (γ + hi)�(γ + hi) ni > 0 and ni = 0 (7)

where� is the Heaviside unit step function. From this equation and applying the self-consistent
condition we can calculate the steady state average population and its variance:

〈ni〉 = 〈(γ + hi)�(γ + hi)〉

= 1√
2πσ 2

hi


σ 2

hi
exp

[
γ 2

2σ 2
hi

]
+
γ

√
2σ 2

hi
π

2


1 + erf


 γ√

2σ 2
hi






 (8)

and

〈n2
i 〉 = 〈

(γ + hi)
2�2(γ + hi)

〉
=


(

γ 2 + σ 2
hi

2

)
1 + erf


 γ√

2σ 2
hi




 +

γ

2

√
2σ 2

hi

π
exp

[
γ 2

2σ 2
hi

] . (9)

The values obtained from these equations are in good agreement with that obtained from
numerical simulation of equation (4) when the choice of the interaction strength and the growth
parameter ensures that the ecosystem is stable. The stationary probability distribution of the
populations is the sum of a delta function and a truncated Gaussian

P(ni) = nei δ(ni) + �(ni)

exp
[ − (ni−nio)

2

2J 2σ 2
ni

]
√

2πJ 2σ 2
ni

. (10)

In the presence of multiplicative noise (ε �= 0), in the asymptotic regime we obtain a
quasi-stationary probability distribution of the populations. This distribution is a bivariate
distribution with respect to the variables ni(t) and hi(t), and it is obtained by neglecting the
fluctuations of the local field in the asymptotic regime:

P(ni) = nei δ(ni) + Ni�(ni) exp

[(
2(γ + hi)

ε
− 1

)
ln ni

]
exp

[
−2(ni)

ε

]
. (11)

3.3. Asymptotic regime

We focus on the statistical properties of the time integral of the ith population Ni(t) in the
asymptotic regime:

Ni(t) =
∫ t

0
dt ′ni(t ′)

= ln

[
1 + ni(0)

∫ t

0
dt ′ exp

[
γ t ′ +

√
εwi(t

′) +
∑
J �=i

JijNj (t
′)
]]

. (12)
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In equation (12) the term
∑

j JijNj gives the influence of other species on the differential
growth rate of the time integral of the ith population and represents a local field acting on the
ith population hi = ∑

j JijNj (t) = Jηi .
We use the same approximation as considered for mean-field interaction (Ciuchi et al

1996) and, after differentiating, we obtain the asymptotic solution of equation (12)

Ni(t) 
 ln

[
ni(0) exp

(√
εwmaxi (t) + Jηmaxi (t)

) ∫ t

0
dt ′eγ t

′
]

(13)

where wmaxi (t) = sup0<t ′<tw(t ′) and ηmaxi (t) = sup0<t ′<tη(t
′). The equation (13) is valid for

γ � 0, that is when the system relaxes towards an equilibrium population and at the critical
point. Evaluating equation (13) for γ � 0, after making the ensemble average, we obtain for
the time average of the ith population N̄i〈

N̄i

〉 
 1

t

[
Nw

√
εt + ln t + 〈ln [ni(0)]〉

]
γ = 0 (14)

and 〈
N̄i

〉 
 1

t

[
Nw

√
εt + (γ + Nη)t +

〈
ln

[
ni(0)

γ

]〉]
γ > 0 (15)

where Nw and Nη are variables with a semi-Gaussian distribution (Ciuchi et al 1996) and Nη

must be determined self-consistently from the variance of the local field. These asymptotic
behaviours are consistent with those obtained using a mean-field approximation. We obtain
in fact the typical long-time tail behaviour (t−1/2) dependence, which characterizes nonlinear
relaxation regimes when γ � 0. Moreover the numerical results confirm these analytical
asymptotic behaviours of N̄i . When the system relaxes towards the absorbing barrier (γ < 0)
we obtain from equation (12) in the long-time regime

〈
N̄i

〉 
 1

t

[
ln(ni(0)) + ln

[∫ t

0
dt ′ exp

(
γ t ′ +

√
t ′wi(t

′) + jηi(t
′)
)]]

. (16)

In this case the time average of the ith population
〈
N̄i

〉
is a functional of the local field and

the Wiener process, and it depends on the history of these two stochastic processes. We have
also analysed the dynamics of the ecosystem when one species is absent. Specifically we
considered the cavity field, which is the field acting on the ith population when this population
is absent. When we switch on the external noise an interesting phenomenon is observed: the
local and the cavity fields, whose probability distributions are different in the absence of noise,
coincide for some populations. This phenomenon can be ascribed to the peculiarity of the
attraction basins of our ecosystem. We find that the probability distributions of the cavity
fields differ substantially from that of the local fields for the same species. This peculiarity of
our population dynamical model is different from the spin glass dynamics, where the two fields
coincide. We also calculate the same quantities in the presence of external noise. The results
of our simulations are reported in figures 4 and 5. The effect of the external noise is to overlap
the two fields in such a way that for some particular species they coincide. Specifically this
happens for species 1 (see figure 5). For species 33 we obtain a partial overlap. This suggests
that, because all populations are positive and can grow during the dynamical process of the
ecosystem, each population plays an important role in the total interaction among the species.

We have found this interesting phenomenon, which is reminiscent of the phase transition
phenomenon, for some populations. The main reasons for this behaviour are as follows: (i) all
the populations are positive; (ii) the particular structure of the attraction basins of our ecosys-
tem; (iii) the initial conditions, which differ for the value of one population, belong to different
attraction basins. In the absence of noise some populations have a dynamical behaviour such
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Figure 4. The probability distribution of the cavity fields P(hc) (open circles) and of the local
fields P(hl) (black circles) for the species 1 and 33 after time t = 100. The system parameters are
N = 1000 species, J = 1 and γ = 1.
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Figure 5. The probability distribution P(h1) of the local (black circles) and of the cavity (open
circles) fields for species 1 after time t = 100, in the presence of external noise. The noise intensity
is ε = 0.1. The other system parameters are the same as those of figure 4.
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that after a long time they influence in a significant way the dynamics of other species. Mean-
while, in the presence of noise all the populations seem to be equivalent from the dynamical
point of view. We have found also that for strong noise intensity (namely ε = 1) all species
extinguish on a long timescale (t ≈ 106 AU). Whether extinction occurs for any value of noise
intensity or not is still an open question, because of time-consuming numerical calculations.
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